5 research outputs found

    Hiding in Plain Sight: A Longitudinal Study of Combosquatting Abuse

    Full text link
    Domain squatting is a common adversarial practice where attackers register domain names that are purposefully similar to popular domains. In this work, we study a specific type of domain squatting called "combosquatting," in which attackers register domains that combine a popular trademark with one or more phrases (e.g., betterfacebook[.]com, youtube-live[.]com). We perform the first large-scale, empirical study of combosquatting by analyzing more than 468 billion DNS records---collected from passive and active DNS data sources over almost six years. We find that almost 60% of abusive combosquatting domains live for more than 1,000 days, and even worse, we observe increased activity associated with combosquatting year over year. Moreover, we show that combosquatting is used to perform a spectrum of different types of abuse including phishing, social engineering, affiliate abuse, trademark abuse, and even advanced persistent threats. Our results suggest that combosquatting is a real problem that requires increased scrutiny by the security community.Comment: ACM CCS 1

    All Your Contacts Are Belong to Us: Automated Identity Theft Attacks on Social Networks

    No full text
    Social networking sites have been increasingly gaining popularity. Well-known sites such as Facebook have been reporting growth rates as high as 3 % per week [5]. Many social networking sites have millions of registered users who use these sites to share photographs, contact long-lost friends, establish new business contacts and to keep in touch. In this paper, we investigate how easy it would be for a potential attacker to launch automated crawling and identity theft attacks against a number of popular social networking sites in order to gain access to a large volume of personal user information. The first attack we present is the automated identity theft of existing user profiles and sending of friend requests to the contacts of the cloned victim. The hope, from the attacker’s point of view, is that the contacted users simply trust and accept the friend request. By establishing a friendship relationship with the contacts of a victim, the attacker is able to access the sensitive personal information provided by them. In the second, more advanced attack we present, we show that it is effective and feasible to launch an automated, cross-site profile cloning attack. In this attack, we are able to automatically create a forged profile in a network where the victim is not registered yet and contact the victim’s friends who are registered on both networks. Our experimental results with real users show that the automated attacks we present are effective and feasible in practice. Categories andSubject Descriptor

    Automatically Generating Models for Botnet Detection

    No full text
    A botnet is a network of compromised hosts that is under the control of a single, malicious entity, often called the botmaster. We present a system that aims to detect bot-infected machines, independent of any prior information about the command and control channels or propagation vectors, and without requiring multiple infections for correlation. Our system relies on detection models that target the characteristic fact that every bot receives commands from the botmaster to which it responds in a specific way. These detection models are generated automatically from network traffic traces recorded from actual bot instances. We have implemented the proposed approach and demonstrate that it can extract effective detection models for a variety of different bot families. These models are precise in describing the activity of bots and raise very few false positives
    corecore